A globally convergent primal-dual interior point algorithm for convex programming
نویسنده
چکیده
In this paper, we study the global convergence of a large class of primal--dual interior point algorithms for solving the linearly constrained convex programming problem. The algorithms in this class decrease the value of a primal--dual potential function and hence belong to the class of so-called potential reduction algorithms. An inexact line search based on Armijo stepsize rule is used to compute the stepsize. The directions used by the algorithms are the same as the ones used in primal--dual path following and potential reduction algorithms and a very mild condition on the choice of the "centering parameter" is assumed. The algorithms always keep primal and dual feasibility and, in contrast to the polynomial potential reduction algorithms, they do not need to drive the value of the potential function towards oo in order to converge. One of the techniques used in the convergence analysis of these algorithms has its root in nonlinear unconstrained optimization theory. AMS 1980 Subject Classification: Primary 90C25; Secondary 49D45, 65K05.
منابع مشابه
Primal-dual path-following algorithms for circular programming
Circular programming problems are a new class of convex optimization problems that include second-order cone programming problems as a special case. Alizadeh and Goldfarb [Math. Program. Ser. A 95 (2003) 3-51] introduced primal-dual path-following algorithms for solving second-order cone programming problems. In this paper, we generalize their work by using the machinery of Euclidean Jordan alg...
متن کاملA path following interior-point algorithm for semidefinite optimization problem based on new kernel function
In this paper, we deal to obtain some new complexity results for solving semidefinite optimization (SDO) problem by interior-point methods (IPMs). We define a new proximity function for the SDO by a new kernel function. Furthermore we formulate an algorithm for a primal dual interior-point method (IPM) for the SDO by using the proximity function and give its complexity analysis, and then we sho...
متن کاملABS Solution of equations of second kind and application to the primal-dual interior point method for linear programming
Abstract We consider an application of the ABS procedure to the linear systems arising from the primal-dual interior point methods where Newton method is used to compute path to the solution. When approaching the solution the linear system, which has the form of normal equations of the second kind, becomes more and more ill conditioned. We show how the use of the Huang algorithm in the ABS cl...
متن کاملAn Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function
In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...
متن کاملOn the Convergence of an Inexact Primal-Dual Interior Point Method for Linear Programming
The inexact primal-dual interior point method which is discussed in this paper chooses a new iterate along an approximation to the Newton direction. The method is the Kojima, Megiddo, and Mizuno globally convergent infeasible interior point algorithm The inexact variation is shown to have the same convergence properties accepting a residual in both the primal and dual Newton step equation also ...
متن کاملA Feasible BFGS Interior Point Algorithm for Solving Strongly Convex Minimization Problems
We propose a BFGS primal-dual interior point method for minimizing a convex function on a convex set de ned by equality and inequality constraints. The algorithm generates feasible iterates and consists in computing approximate solutions of the optimality conditions perturbed by a sequence of positive parameters converging to zero. We prove that it converges qsuperlinearly for each xed . We als...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Math. Program.
دوره 64 شماره
صفحات -
تاریخ انتشار 1994